Kyrgyz-Japan Workshop organized by the Japan Society of Seismic Isolation (JSSI) Feb. 8 - 9, 2021

Basic Design of Vibration Controlled Structure and Full-Scale Experiments

Kazuhiko KASAI* Specially-Appointed Professor, Tokyo Institute of Technology (TIT)

Ordinary Structural System vs. Two Protective Systems

Conventional Structure : Dissipates seismic energy by sacrificing members (columns, beams, and walls).

Seismic Isolation Structure : Isolates building from ground shaking.

Vibration Controlled (VC) Structures: Mitigates damage and vibration using dampers installed at building floors or top.

Ordinary Structure vs. Two Protective Systems

CURRENT STATUS OF JAPANESE VIBRATION CONTROL TECHNOLOGY

After the 1995 Kobe Earthquake, Most Major Buildings are Either Passively-Controlled or Base-Isolated in Japan.

Various Damper Types and Frame Types Exist, and Much More Variations Expected.

⇒ Needs for Further Research and Design Specifications

1. Individual Research Efforts.

2. Publication of "Passive Control Manual": Response Control Committee, Japan Society of Seismic Isolation (JSSI)

JSSI Specifications for Passively Controlled Buildings

(Chinese Translation Completed, and will be Published This Fall)

JSSI (Japan Society of Seismic Isolation)

社团法人 日本隔震结构协会编写

翻译 蒋 通 校对 冯德民 中国建筑工业出版社

中文版翻译指导委员会名单

- 顾 问:曾少华周福霖 欧进萍
- 主任委员: 王亚勇 吕西林
- 委 员: (以姓氏笔画为序) 王自法 刘文光 刘伟庆 杜永峰 吴波 李宏男 李忠献 李爱群 李惠 李黎 周云 施卫星 贾抒 聂建国 翁大根

Deformation-Dependant Damper

Velocity-Dependant Damper

 F_d = Damper Force u_d = Damper Deformation \dot{u}_d = Damper Velocity \circ = C_d = Damper Coefficient ω = Circular Frequency \bullet =

- = Zero Deformation
- = Maximum Deformation

Manual Outline: Applicability

Devices of Passive Control Systems

Viscous Damper	Oil Damper	Viscoelastic Damper	Steel Damper
$F = C \dot{u}^{\alpha}$	$F = C \dot{u}$	$F = K(\omega) \cdot u + C(\omega) \cdot \dot{u}$	$F = K \cdot f(u)$
Combined Ellipse and Rectangle Hysteresis	Ellipse Hysteresis	Inclined Ellipse Hysteresis	Bilinear Hysteresis
Silicon Fluid etc.	Oil	Acryl, Butadiene etc.	Steel, Lead, Friction Pad, etc.
Shear Resistance, Flow Resistance	Orifice Flow Resistance	Shear Resistance	Yielding Resistance Slipping Resistance
Plane, Box, and Tube Shapes	Tube Configuration	Tube and Plane Shapes	Tube and Plane Shapes

Manual Outline: Applicability

Framing Types of Passive Control Systems

Directly Connected System	Wall Type	Brace Type	Shear Link Type
Indirectly Connected System	Stud Type	Bracket Type	Connector Type
Special System	Column Type	Beam Type	Amplifier Type

0000

Tokyo Institute of Technology Kasai Lab.

Unified Model to Evaluate Various Frame Types

10-Story JSSI Theme Structure with Brace Type Damper

10-Story JSSI Theme Structure with Stud Type Dampers

Outline of Design Process

Single-Degree-of-Freedom Modeling $H_{eff} = \sum_{i=1}^{N} \left(W_i H_i^2 \right) / \sum_{i=1}^{N} \left(W_i H_i \right) \approx 0.7H$

 $= 0.7 \times 4200 = 2960$ cm

Get Story Drift Angle (Undamped)

 $\theta_f = S_d / 0.7H = 44.2 / 2960 = 1/67 \, \text{rad}$

Get Required Disp. Reduction Factor for the Target Story Drift Angle (Damped) $R_d = \theta_{max} / \theta_f = (1/150)/(1/67) = 0.45$

Undamped: $\Delta_{f} = h_{2}\theta_{f} = 400 \text{ cm} \times 1/67 = 5.97 \text{ cm}$ **Damped:** $\Delta = (h_{2}\theta_{f}) \cdot R_{d} = 5.97 \text{ cm} \times 0.45 = 2.69 \text{ cm}$

After Estimating the Required Force and Ductility Demand (e.g. Steel Damper), Size the Proportion:

Rigid End Zone Length Elastic Area & Plastic Area Plastic Portion Length

= Lri = A'di,Adi = Ldi

(LY225 Material or Others)

Dynamic Time History Analysis Methods (Detailed Analysis vs. Approx. Analysis)

(a) Member-to-Member Model (b) Stick Model

Full-Scale 5-Story Specimen

Beam-Column Joints (w.o. & w. Damper)

Sample for Deformation Measurement (Oil Damper Case)

Tokyo Institute of Technology Kasai Lab.

Full-Scale 5-Story Building with Dampers

Seismically Active Wt .: 4,734 kN Frame Period: 0.74s (x), 0.79s(y) With Elast. Steel Damper: 0.53s (x), 0.56s(y)

Deformations of Dampers vs. Added Components

 $\hat{u}_d = \hat{u}'_d + \hat{u}''_d$ (Summation of disp. of both ends, steel damper only)

 $\hat{u}_a = \hat{u}_d$ + deformation of supporting members and connections

Major Damper Types Used in Japan

Fig. 4 Five Types of Dampers Considered by JSSI Manual

Five Major Damper Types Considered by JSSI Manual, Japan Society for Seismic Isolation, 1st Edition and 2nd Editions, 2002, 2005, and 2007

Steel Dampers

Viscous Dampers

Viscoelastic Dampers

Oil Dampers

実大5層制振建物実験 Full-Scale 5-Story Passively-Cotrolled Building Test at E=Defense (February.28~April.7,2009)

Tokyo Institute of Technology Kasai Lab.

Hysteresis Curves of Dampers (Seel Dampers, 1st Story)

Measured Forces and Deformation (100% Takatori Ground Motion) Added Component vs. Frame, and Total System (Y, 1st Story)

Tokyo Institute of Technology Kasai Lab.

Tokyo Institute of Technology Kasai Lab.

Maximum Reponses (Steel Damper Case vs. No-Damper Case)

Tokyo Institute of Technology Kasai Lab.

Tokyo Institute of Technology Kasai Lab.

Re-Testing of Dampers Used for 5-Story Bldg. (Steel Damper, Tokyo Tech.)

Full-Scale Damper Tests

Sample for Deformation Measurement (Oil Damper Case)

Tokyo Institute of Technology Kasai Lab.

Conclusions

Seismic isolation systems and vibration control (VC) systems have become the standard technology to protect human lives, building functionality, and assets against major earthquakes.

VC systems are discussed, with emphasis on added damping and stiffness.

Full-scale tests results using the world's largest shake table **(E-Defense)** indicate significant benefit from using dampers.

