УДК 69.001.5 DOI: 10.38054/iaeee-202308

КАЗАКСТАН РЕСПУБЛИКАСЫНДАГЫ ВИБРОДИНАМИКАЛЫК СЫНОО

Шокбаров Э.М., т.и.к. «КазНИИСА» АК, Алматы, Казакстан Республикасы, eshokbarov@kazniisa.kz

Омаров Ж.А., т.и.к. «КазНИИСА» АК, Алматы, Казакстан Республикасы, zomarov@kazniisa.kz

Шаймерденов Т.А., «КазНИИСА» АК, Алматы, Казакстан Республикасы, timur@kazniisa.kz

Аннотация: Макалада Казакстан Республикасынын сейсмикалык аймактарында көп кабаттуу үйлөрдү долбоорлоого заманбап ыкмалар берилген.

Негизги сөздөр: вибродинамикалык машина, ылдамдыктар, жылыштар, бузулуулар

ВИБРОДИНАМИЧЕСКИЕ ИСПЫТАНИЯ В РЕСПУБЛИКИ КАЗАХСТАН

Шокбаров Е.М., к.т.н. АО «КазНИИСА», г. Алматы, Республика Казахстан, eshokbarov@kazniisa.kz

Омаров Ж.А., к.т.н. АО «КазНИИСА», г. Алматы, Республика Казахстан, zomarov@kazniisa.kz

Шаймерденов Т.А., АО «КазНИИСА», г. Алматы, Республика Казахстан, $\underline{timur@kazniisa.kz}$

Аннотация: В статье изложены вибродинамические испытания как натурных зданий, так и экспериментальные исследования различных фасадных систем, строительный материалов и иных изделий.

Ключевые слова: Вибродинамиеская машина, ускорения, перемещения, повреждение

VIBRODYNAMIC TESTS IN THE REPUBLIC OF KAZAKHSTAN

Shokbarov E.M., Ph.D. KazNIISA JSC, Almaty, Republic of Kazakhstan, eshokbarov@kazniisa.kz

Omarov Zh.A., Ph.D. KazNIISA JSC, Almaty, Republic of Kazakhstan, zomarov@kazniisa.kz

Shaimerdenov T.A., KazNIISA JSC, Almaty, Republic of Kazakhstan, timur@kazniisa.kz

Annotation: The article presents vibrodynamic tests of both full-scale buildings and experimental studies of various facade systems, building materials and other products.

Key words: vibrodynamic machine, accelerations, displacements, damage

Сейсмические районы Казахстана занимают порядка 43% от общей площади территории республики. Здесь проживают примерно 45% от общей численности населения Казахстана. При этом численность населения, проживающего в 9-балльной зоне составляет более 3,5 млн. человек (в том числе в г. Алматы – 2,2 млн. человек); в 8-балльной зоне – 1,1 млн. человек; в 7-баллной зоне – 2,0 млн. человек и в 6-баллной зоне – 1,2 млн. человек.

Благоприятные природно-климатические условия, наличие ценных сырьевых и энергетических ресурсов в сейсмических районах обусловили сосредоточение в них значительной части производственного и сельскохозяйственного потенциала республики.

В сейсмических районах Казахстана расположено примерно 38% общего жилого фонда, сконцентрировано около 28% производственных фондов промышленности и сельского хозяйства.

Исходя из природы и особенностей сейсмических воздействий, наиболее предпочтительными, являются экспериментальные исследования, при проведении которых реализуется динамический характер нагружения исследуемых объектов.

Для создания динамических нагрузок на исследуемые объекты наиболее часто используются:

- мгновенный сброс статически приложенных к объекту нагрузок;
- сейсмовзрывные воздействия;
- сейсмоплатформы;
- вибрационные машины.

Основная цель выполненных научно-исследовательских работ заключалась в изучении специфики поведения многоэтажных жилых зданий различных конструктивных систем при нагрузках типа сейсмических и в проверке корректности расчетных предпосылок, принятых при его проектировании.

На сегодняшний день специалистами АО «КазНИИСА» проведено 17 натурных вибродинамических испытаний построенных в городах Алматы, Шымкент, Капшагай и в Ташкенте

Рисунок 1. Общие виды зданий прошедшие испытания:14 этажный жилой комплекс, 26 этажный жилой комплекс «Мегатауэрс», 30 этажный офисный комплекс «Нурлы-Тау» и 21 этажный жилой комплекс «Столичный центр»

В выполненных экспериментальных исследованиях динамические нагрузки на исследуемые объекты создавались с помощью вибромашины инерционного действия типа В-3. Вибромашины типа В-3 позволяют развивать на валу возмущающую силу величиной до 1500-3000 кН.

Комплект силового оборудования для вибрационных испытаний здания включал в себя:

- -двигатель постоянного тока мощностью 200 кВт;
- -шесть двухвальных вибраторов с горизонтальными осями вращения рычаговдебалансов;
- -доборные грузы-дебалансы, навешиваемые при необходимости на рычаги вибраторов;
- –пульт управления, позволяющий плавно регулировать частоту вращения вала двигателя.

При испытаниях двигатель и вибраторы были жестко закреплены к горизонтальной стальной раме, расположенной в уровне перекрытия над 29 этажом здания. Стальная рама, в свою очередь, была жестко закреплена к этому перекрытию.

Рисунок 2 Общий вид вибромашины В-3

Регистрация инструментальных данных осуществлялись с помощью специального программно-аппаратного комплекса, разработанного по техническому заданию специалистов института КазНИИССА.

Проведении вибрационных включали в себя несколько этапов испытаний, где выполнялись: регистрация колебаний и предварительная обработка данных, визуальное обследование конструкций, а также фото- и видеосъемки объекта.

По итогам испытаний определялись следующие решения:

- пространственные формы колебаний здания;
- деформации междуэтажных перекрытий, обусловленные их податливостью;
- горизонтальные и вертикальные деформации основания здания;
- перекосы этажей.
- анализ инструментальных данных, полученных при вибрационных испытаниях экспериментального объекта;
- выводы.

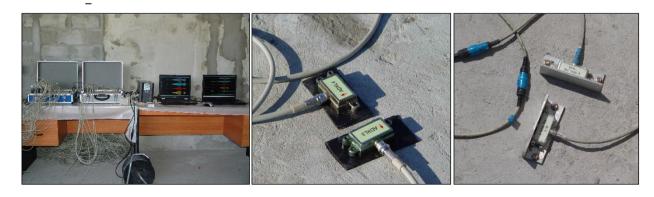


Рисунок 3 Общий вид программно-аппаратного комплекса и датчиков- акселерометров

Нурлы Тау 35 этажный жилой дом

Общее количество этапов составило семь. Максимальный период колебаний на 6 этапе составил 1,48 сек. Максимальные ускорения, полученные на покрытии, составили 0,34g. Максимальные перемещения составили по 2-й форме 13,2 мм.

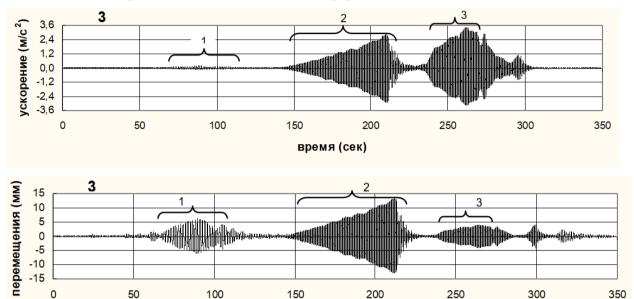


Рисунок 4 Графики перемещений и ускорений

В несущих конструкциях экспериментального объекта, после все этапов вибрационных воздействий, какие-либо повреждения отсутствовали.

В некоторых ненесущих конструкциях (перегородках) и в местах их примыкания к смежным конструкциям визуально отмечено образование трещин с незначительным раскрытием см. таблицу 1

Номер формы колебаний здания	Значения ускорений (в долях g) центра покрытия здания, соответствующие его формам собственных колебаний	
	расчетные значения	экспериментальные
		значения
1	0,281	0,016
2	0,394	0,199
3	0,264	0,240

Из таблицы 1 следует, что максимальные горизонтальные инерционные силы, действовавшие на экспериментальный объект при испытаниях (с учетом того факта, что в период испытаний часть нагрузок, действующих на объект в процессе эксплуатации, отсутствовала):

- -при колебаниях объекта по первой форме составляли примерно 80% от расчетных сейсмических нагрузок интенсивностью 5 баллов;
- -при колебаниях объекта по второй форме составляли примерно 90% от расчетных сейсмических нагрузок интенсивностью 8 баллов;
- -при колебаниях объекта по третьей форме составляли примерно 80% от расчетных сейсмических нагрузок интенсивностью 9 баллов.

Mega Towers Almaty 26 этажный жилой дом

Общее количество этапов составило десять. Максимальный период колебаний на 9 этапе составил 1,18 сек. Максимальные ускорения, полученные на покрытии, составили 0,46g. Максимальные перемещения составили по 1-й форме 15,7 мм.

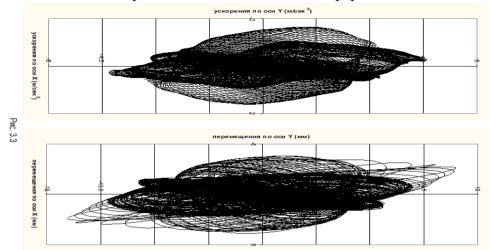


Рисунок 5 Траекторий движения междуэтажного перекрытия здания над техническим этажом на этапе испытаний IV-3

В несущих конструкциях экспериментального объекта, после всех этапов вибрационных воздействий, какие-либо значимые повреждения отсутствовали. Лишь в отдельных стенах было отмечено образование волосяных трещин небольшой протяженности, развивающихся из углов дверных проемов, осыпание штукатурки в местах примыкания колонн и стен к перекрытиям и незначительное раскрытие в стенах существовавших трещин технологического характера.

Сопоставление количественных характеристик расчетных сейсмических нагрузок на запроектированное здание и динамических нагрузок, действовавших на объект в процессе испытаний см. Таблицу 2.

Номер формы колебаний здания	Значения ускорений (в долях g) центра покрытия здания, соответствующие его формам собственных колебаний	
	расчетные значения	экспериментальные
		значения
1	0,343	0,046
2	0,433	0,440

Из таблицы 2 следует, что максимальные горизонтальные инерционные силы, действовавшие на экспериментальный объект при испытаниях (с учетом того факта, что в период испытаний часть нагрузок, действующих на объект в процессе эксплуатации, отсутствовала):

- -при колебаниях объекта по первой форме соответствовали расчетным сейсмическим нагрузкам интенсивностью 6 баллов;
- -при колебаниях объекта по второй форме были близки к расчетным сейсмическим нагрузкам, соответствующим сейсмичности 9 баллов.

Длительность колебаний здания при каждом этапе вибрационных испытаний составляла 400-500 сек, что в 5...6 раз превышает длительность колебаний зданий при реальном сильном землетрясении.

Общее количество циклов колебаний здания только на последних трех этапах испытаний (наиболее интенсивных) превысило две тысячи.

Стендовые вибродинамические испытания

Также на экспериментальной базе АО «КазНИИСА», в период с 2005 по 2022 года, на экспериментальном стенде, было выполнено более 60 экспериментальных вибродинамических испытаний:

- фрагментов ненесущих ограждающих стеновых конструкций и перегородок;
- фасадных систем «Алюгал» с фасадными элементами «Алюкотте», «Натуральный камень», «Керамическая натуральная плитка»;
 - навесных фасадных систем «СИАЛ» с каменными и керамическими плитами;
 - ограждающих конструкций сэндвич-блоков фасадных «VIMA-SBF»;
 - витражные системы «Алюгал»;
- несущих конструкций из местных материалов (саман), газобетоных блоков, финблоки;
 - навесные фасады из хризотилцементных листов;
 - фиброцементные панели японской компании KMEW и многое другое.

Рисунок 2 Общие виды экспериментальных фасадных систем, перегородок, витрин и т.д.

Все экспериментальные исследования, были выполнены на специальном экспериментальном стенде, представляющем собой ячейку двухэтажного стального каркаса.

Экспериментальный стенд, был построен в 2004 году и представляет собой каркасное сооружение, размерами в плане 6,0×6,0 метра, высотой 6,6 метра и включает:

- 4 угловые колонны (K-1) коробчатого сечения $(2\Gamma H[280\times140\times8);$
- ригели покрытия и нижнего яруса, двутаврового сечения P1 (полка $2-120\times8$, стенка 300×5);
- ригели промежуточного яруса, двугаврового сечения P2 (полка 2-120×12, стенка 340×8);
- промежуточные стойки, двутаврового сечения СП (полка $2-120\times10$, стенка 200×5), расположенные по внешнему контуру фрагмента.

Конструктивные элементы опытного фрагмента изготовлены из стали марки С345.

Перекрытия – монолитные железобетонные плиты толщиной 150 мм, объединенные арматурными выпусками с ригелями каркаса. В уровне покрытия, на отм. 6,6 метра, толщина плиты составляла 200 мм.

Рисунок 3 Вибромашина тип В-2 В выполненных экспериментальных исследованиях динамические нагрузки на исследуемые объекты создавались с

помощью вибромашины инерционного действия типа B-2. В комплект вибромашины B-2 входило:

- четыре двухвальных виброблока с горизонтальными осями вращения рычагов;
- двигатель постоянного тока мошностью 110 кВт;
- доборные грузы-дебалансы, навешиваемые на рычаги вибраторов;
- пульт управления, позволяющий плавно регулировать частоту вращения вала двигателя

Двигатель и виброблоки были жестко закреплены к горизонтальной стальной раме, расположенной в уровне покрытия. Стальная рама, в свою очередь, была жестко закреплена к перекрытию.

При испытаниях объектов изучались особенности работы ненесущих стеновых конструкций при нагрузках, действующих из плоскости и в плоскости.

Испытания каждой группы объектов состояли из нескольких основных этапов. Каждый этап испытаний заключался в регулируемом прохождении через резонансы стенда или экспериментальных объектов.

Принятая методика вибродинамических испытаний позволяла:

- возбуждать колебания стенда в широком диапазоне частот и амплитуд;
- обеспечивать длительность колебаний, достаточную для оценки влияния малоцикловой усталости на состояние исследуемых конструкций;
- оценивать состояние ненесущих стеновых конструкций при разных амплитудах колебаний стенда.

В процессе испытаний двухэтажный стальной каркас с исследуемыми фасадными системами, перегородками и другими экспериментальными объектами неоднократно подвергался динамическим нагрузкам высокой интенсивности. Нагрузки, действовавшие на этапах испытаний, соответствовали нагрузкам, прогнозируемым при реальных землетрясениях интенсивностью 9 и более баллов.

Так, например, результаты ускорений, перемещений и перекосы этажей фасадной система СНК-СК-004 с плитами из натурального камня составляли:

— максимальные ускорения в плоскостях фрагмента навесного фасада (с каменными плитами) превышали соответствующие ускорения смежных конструкций стенда до 2-3 раз и достигали в уровне покрытия стенда $48,2\,\mathrm{m/c^2}$, а в уровне перекрытия над первым этажом — $49.2\,\mathrm{m/c^2}$.

По результатам испытаний, были получены максимальные горизонтальные перекосы этажей стенда, имевшие место при вибродинамических испытаниях:

- превышали предельно допускаемые нормами расчетные перекосы этажей сейсмостойких зданий в 2,0...3,0 раза;
- были близки к предельно допускаемым перекосам этажей сейсмостойких зданий при реальных сейсмических воздействиях.

После каждого этапа испытаний выполнялось визуальное обследование всех объектов, велась фото и видео фиксация. Фиксировались все повреждения, если таковы имели место.

На основании полученных данных, выполнялся отчет о возможности применения объектов испытаний в сейсмических районах Республики Казахстан.

В данных отчетах учитывались все достоинства и недостатки испытуемых объектов, полученные в результате испытаний с выводами и рекомендациями.

Рисунок 4 Общие виды повреждений фасадных систем

Заключение

Подобные эксперименты позволяют получить достаточно объективную информацию об эффективности принятых конструктивных решений зданий или их отдельных элементов, не проходивших ранее проверку в условиях реальных землетрясений, а также о достоверности расчетных моделей, применяемых для обоснования сейсмостойкости конструктивных систем

Список использованной литературы

- 1. Вибрационные испытания зданий под редакцией д.т.н. Г.А. Шапира.
- 2. Научно-исследовательских работ по темам: «Последствия землетрясений в Армении 07.12.1988 г. и Турции 18.08.1999 г.».
- 3. «Вибрационные испытания жилого здания с безригельным каркасом и диафрагмами жесткости» (Алматы, КазНИИССА, 2002 г.).
- 4. «Вибрационные испытания 35-этажного жилого здания каркасно-стеновой конструктивной системы» (Алматы, КазНИИССА, 2005 г.).
- 5. «Вибрационные испытания 7-этажного каркасного здания с диафрагмами жесткости» (Алматы, КазНИИССА, 2005 г.).
- 6. «Вибродинамические испытания 25-этажного жилого здания каркасно-стеновой конструктивной системы» (Алматы, КазНИИССА, 2007 г.)
- 7. Кулбаев Б.Б., Шокбаров Е.М., Омаров Ж.А., Шаймерденов Т.А., Лопухов С.А. Вибродинамические испытания одной секции 3-х секционного 9-ти этажного крупнопанельного жилого дома для муниципального строительства в городе

Ташкент. – Вестник Международной Ассоциации экспертов по сейсмостойкому строительству. – Б.: МАЭСС, 2022. – № 2 (14). – С. 37-47.

- 8. Абдыкалыков А.А., Абдыбалиев М.К., Бегалиев У.Т. Подходы к определению сейсмической опасности строительной площадки и несущей способности конструкций зданий в Кыргызской Республике. Вестник Международной Ассоциации экспертов по сейсмостойкому строительству. Б.: МАЭСС, 2022. № 2 (14). С. 5-13.
- 9. Немчинов Ю.И., Фаренюк Г.Г. Государственные нормы ДБН В.1.1-12:2014 «Строительство в сейсмических районах Украины» и опыт высотного строительства с учётом рекомендаций европейского кода (Еврокод 8). Вестник Международной Ассоциации экспертов по сейсмостойкому строительству. Б.: МАЭСС, 2020. № 1 (9). С.29-31.
- 10. Тяпин А.Г., Антонов Н.А. Влияние податливости фундаментной плиты на сейсмическую реакцию сооружений. Часть І: Сооружение типа "матрешки".

Вестник Международной Ассоциации экспертов по сейсмостойкому строительству. – Б.: МАЭСС, 2020. - N 1 (9). - C.32-46.

11. Тяпин А.Г., Антонов Н.А. «Скрытый» параметр программы SASSI и его влияние на сейсмическую реакцию сооружений. — Вестник Международной Ассоциации экспертов по сейсмостойкому строительству. — Б.: МАЭСС, 2020. — № 1 (9). — С.46-54.